Improve Return on Assets (ROA) by Standardizing Asset Management Operations
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>PART I</td>
<td>2</td>
</tr>
<tr>
<td>The Case for Standardization</td>
<td>2</td>
</tr>
<tr>
<td>Tackling the Standardization Challenge</td>
<td>3</td>
</tr>
<tr>
<td>Six Benefits of Standardization</td>
<td>4</td>
</tr>
<tr>
<td>PART II</td>
<td>5</td>
</tr>
<tr>
<td>What Does Standardization Involve?</td>
<td>5</td>
</tr>
<tr>
<td>What Needs to be Documented and Standardized</td>
<td>6</td>
</tr>
<tr>
<td>Using Industry Standards to Guide the Standardization Effort</td>
<td>7</td>
</tr>
<tr>
<td>Using Proven Models to Expedite the Standardization Effort</td>
<td>8</td>
</tr>
<tr>
<td>PART III</td>
<td>9</td>
</tr>
<tr>
<td>Best Practice Templates for Asset Management</td>
<td>9</td>
</tr>
<tr>
<td>CLIENT BRIEF</td>
<td>15</td>
</tr>
<tr>
<td>Standardizing Asset Management at a $3 Billion Petroleum Company</td>
<td>15</td>
</tr>
<tr>
<td>NEXT STEPS</td>
<td>16</td>
</tr>
<tr>
<td>Making Standardization A Reality</td>
<td>16</td>
</tr>
</tbody>
</table>
Executive Summary

In a multi-plant environment, getting everyone across the sites working together and managing their assets in similar ways can be challenging. Geographical separation, lack of documentation, limited corporate assistance, and absence of standards are some factors that inhibit team work, and encourage individuals to do things their way. ‘Go your own way’ is a great song by Fleetwood Mac, but that asset management strategy is ineffective in a corporate multi-site environment.

Different management approaches to identical and similar asset classes: introduces variability, risks, and higher costs into the operation; and the golden opportunity to fully leverage resource knowledge and build an asset management community within the organization is missed.

Physical assets play a critical role in helping organizations meet business objectives. In multi-plant environments, establishing organizational asset management standards are central to the maximization of ROA. Standardization of the skills, work processes, and results are widely regarded as best practices in EAM, but despite this many multi-site organizations struggle to get everyone on the same page.

It is very common to see one plant managing assets in a different way from another plant. Differential asset management can be perplexing. One of the main factors that inhibit process standardization is lack of documentation. If the organizational processes are not written down, variability is a natural result.

The concept of standardization is not a new. Organizations have spent billions of dollars standardizing IT systems (e.g., ERP, EAM, etc.) but somehow key drivers of software success (people, process and data) get overlooked. A culture of documenting key asset management drivers, such as processes, business rules, master data conventions, roles and responsibilities, and KPIs must be developed as practices cannot be communicated through telepathy.

Documenting practices are essential but creating value-added asset management documentation can be a lot of work and may require advanced skills. Many businesses may not have the resources or expertise to develop the content needed to standardize asset management across the enterprise. No worries though, the documentation challenge can be overcome by using industry-available frameworks and models.

Asset management models expedite the documentation development process and provide a comprehensive, proven and customizable starting point for standardization. Asset management models accelerate documentation, reduce the resources required, and provide a solid foundation of industry-accepted best practices to build from. The efficacy of the use of industry models to standardize asset management was proven by our client, Delek US, a $7B petroleum company whose insurance regulator assessments revealed lowered risks, improvements in equipment availability, and reductions in MRO costs.

By starting with an industry proven model, organizations can significantly reduce the standardization effort and ensure value-added practices are being implemented. Part 3 of this white paper includes several asset management model excerpts that can be adapted for use.
PART I
The Case for Standardization

A 2008 survey conducted by the Aberdeen Group revealed that standardization in the asset management process was a common practice by top-tier manufacturing companies. Based on data about overall equipment effectiveness, and plant throughput and downtime; best-in-class manufacturers were 50% more likely to standardize asset maintenance and reliability processes across the enterprise.¹

Best-in-class manufacturers were also almost three times more likely to standardize KPIs and condition monitoring processes.² Standardization is key to improving return on assets (ROA). When businesses own and operate large portfolios of physical assets, consistent asset management is essential for maximizing the value those assets deliver over the long term. Standardization drives profit by:

- enabling centralized decision-making,
- reducing total cost of ownership (TCO),
- increasing equipment availability,
- reducing MRO costs,
- minimizing and mitigating health, safety, and environmental (HSE) risks, and
- improving EAM/CMMS software performance.

² Ibid., p. 10.

Businesses with thousands of physical assets spread across multiple sites need consistent approaches to manage those assets.

This is not a new idea as most companies in asset-intensive industries know that standardization is a best practice for enterprise asset management.

Standardization does not mean that every plant must do things the same way. Site-specific processes will always be necessary, but with standardization there is consistency in practice and data from one plant to the other.

When each site devises a unique way of doing things—reinventing the wheel every time—there is wastage of resources resulting in discordant practices and data within the same organization. Sites should be working from an asset management model—the same foundation of best practices—and customize from there.

Standardization is not idealistic—It is essential to “effective and efficient” asset management.
Tackling the Standardization Challenge

Although it is common knowledge among many asset-intensive companies that standardization is important, few have adopted such practices. Consistent, controlled asset management remains a pipe dream for many, perhaps most, organizations. The bigger the operation, the harder it is to achieve standardization.

Organizations are usually deterred from standardization by one of two hurdles:

1. The scale of the effort- traditional approaches require significant investment of time, money, and other resources. Even if companies see the value in standardization, the effort involved is intimidating and, in some cases, presents insurmountable obstacles,

2. The expertise required- many companies have the requisite knowledge and experience to standardize certain elements of asset management, but few have the expertise to standardize all required elements. This results in some areas being incomplete or undeveloped.

Both challenges can be overcome by taking advantage of existing industry standards, frameworks, and models for asset management. These models fall into two categories:

- International standards, such as ISO 55000 and PAS 55, outline requirements and serve as roadmaps for the standardization effort.
- Industry-proven models, such as the Synergy™ from SwainSmith, provide a more comprehensive foundation of processes, data conventions, roles and responsibilities and other standards.
Six Benefits of Standardization

Asset management processes (maintenance, storeroom, procurement) frequently remain the tacit knowledge of experienced team members. Creating a model and developing precise documentation to increase access to this tacit knowledge is advantageous in many ways. Below are six important benefits of standardizing data, work and organizational processes:

Consistency and Collaboration Between Shifts and Sites

Documentation ensures that a given process can be duplicated across all shifts and sites. This promotes quality and productivity, and it also invites ongoing collaboration. As suggestions and discussions ensue and improvements are made, the entire operation benefits from knowing and using the best practices.

Reductions in Variability

When asset management processes are standardized, variability in uptime and service levels decrease greatly. While slight variations may still exist because of different types of work, most of these variations are eliminated because of the consistency of steps and sequences in both material work and MRO supply chain activities. This aspect of standardizing also delivers tremendous value to operations personnel, who rely heavily on production and facility equipment. Finally, if additional changes are required, they are easier to implement because of the existing standardized work processes.

Easier Training for New Asset Management Personnel

Bringing new asset management personnel up-to-speed quickly is a challenge in any complex, asset-intensive environment. Standardized work and well-crafted documentation simplify the training process of new personnel. The best process does not only spell-out steps in clear language, but is also highly visual—with images, charts, drawings, and other helpful illustrations. This training resource provides a continuous reference for asset management personnel and enables a new communication system for the team. In the maintenance shop, team leaders and others from outside the department can use the documentation to determine the level at which each technician is qualified on machines, work cells, and specific repairs.

Improved Safety

In repetitive, high-volume departments, standardized work enables team members to avoid unnecessary risk. It is possible to minimize risks because the processes, steps, and sequences are visible and understood. There is no need to attempt shortcuts or try to improve efficiencies on the fly, because the processes in place were already evaluated in terms of safety and efficiency. Standardized processes make work safer.

Consistent Performance Measurement

Having documented standards can be helpful when critically evaluating asset management operations. Project Management, Maintenance, Storeroom, Operations and Procurement have significant impact on production, cost, and compliance. Taking a closer look at how maintenance work is identified, planned, scheduled, and completed; and how the storeroom staff manage spare parts, can yield big savings. This, in turn, encourages dialogue among different levels of personnel and functional areas, and ultimately reinforces the sense of ownership among those who execute the actual processes.

Baseline for Continuous Improvement

Standardized work facilitates continuous improvement by establishing performance baselines. The existence of baselines makes it possible to quickly visualize improvements about documented processes that were evaluated and tested. Baselines also make it possible for teams to work together to evaluate all variables before determining whether any change needs to be made.
PART II
What Does Standardization Involve?

Standardization means having processes and master data that are organized and presented in such a way that all team members can easily understand, consistently follow, and constantly improve them. Standardization is key in the chaotic world of asset management. Having a fixed reference for work activities—a standard model for how things are done—is the antidote to asset management chaos.

Standardization is not limited to business processes, as it encompasses data standards, such as nomenclature, EAM/CMMS coding structures, and taxonomies; role definitions, responsibilities, and reporting relationships; EAM/CMMS software configuration; and performance measures and targets. Almost every aspect of the asset management operation can and should be standardized. Documentation is essential to standardization. Getting maintenance teams at different plants to execute work the same way is impossible without documented processes.

Keeping MRO inventories consistent across multiple storerooms is unfeasible without standard naming conventions for MRO parts and materials.

In every area of asset management, documentation is a prerequisite for consistency. Standardizing an asset management operation is like building a house. Before buying the first piece of lumber or pouring the first slab of concrete, a contractor needs a blueprint that shows what the finished house will look like. The blueprint serves as a reference and guide, ensuring that all the pieces fit together seamlessly to create the finished structure.
What Needs to be Standardized

To achieve standardization, an organization needs to formalize and document key asset management elements. These components may be divided into five key areas:

Organization and management

Policies, objectives, and strategies should be determined by executive leadership and communicated to all plant managers. Roles and responsibilities should be identical across the organization. Every role and business function should have the same responsibilities at one site as it does at another.

Content

Master data should conform to uniform standards. Equipment names, part descriptions (see below), and other information should follow the same format at every site. Coding structures should be the same for the whole enterprise. Codes for work order priority and status, equipment class and criticality, and problem and failure reasons should be identical.

Performance management

KPIs should be consistent. The same performance measures should be used, with the same performance targets, across all sites. Auditing should happen the same way across the business. Auditing tools, methods, and schedules should not vary from site to site.

Practices

Processes and procedures should be consistent. A given task, such as planning and scheduling maintenance work, performing failure analysis, or requesting parts, should be performed the same way regardless of the location or the person performing it.

Information systems

The EAM software system should be configured the same way throughout the business. Features such as screens, menus, and fields should be identical from one plant to the next.

Together, these five areas form an organizational model for asset management. A model sets the standard, establishing a common point of reference that can be used to implement consistent practices across the organization.
Using Industry Standards to Guide the Standardization Effort

The kind of organizational model described above—a documented framework of policies, data, processes, and procedures—is exactly what industry standards recommend for increasing profit and reducing risk in asset-intensive organizations. In fact, the two most prominent international standards for asset management—ISO 55000 and PAS 55—both provide valuable guidance for implementing such an organizational model.

ISO 55000 provides recommendations and requirements for establishing a management system for physical assets. ("Management system" in the sense of a quality management system or a safety management system—not a software system.)

An ISO 55000 asset management system is one type of documented organizational model for asset management. It is based on a publicly available specification, PAS 55. PAS 55, like ISO 55000, recommends the development of a documented model, which both standards call an "asset management system."

Even though PAS 55 and ISO 55000 lack detail and focus, on what you should be doing vs. how to do it, they offer excellent starting points for an organization’s asset management journey.

For an organization that wants to standardize its asset management, ISO 55000 and PAS 55 provide valuable guidance for an asset management standardization effort.
Using Proven Models to Expedite the Standardization Effort

Documentation and establishing the practice that is best for the organization, may sound overwhelming, but the process can be greatly expedited by starting with an industry-proven framework or library. Such frameworks and libraries, which are available in the marketplace, provide a comprehensive and customizable foundation for an organizational asset management model. They accelerate the development process, reduce the investment of resources that is required, and ensure that the finished model is based on industry-accepted best practices.

SOME COMPANIES DISLIKE THE IDEA OF A FRAMEWORK BECAUSE IT SOUNDS LIKE A STRAITJACKET. THEY DO NOT WANT TO BE STUCK WITH ONE-SIZE-FITS-ALL PRACTICES THAT CONSTRICT THEIR BUSINESS OR SQUEEZE THEM INTO A MOLD DESIGNED FOR ANOTHER ORGANIZATION.

Industry models are just a means to an end—they are not meant to be implemented without customization. Models provide a framework with which to begin the design process. Taking advantage of them allows a business to develop a better model in less time, and with lower costs, than starting from scratch.

Existing industry models can eliminate as much as 90% of the time involved in designing and documenting an asset management model. At the same time, they put the operation on a firm footing of best practices. This allows a business to focus on implementing best practices vs. getting drug down a rabbit hole trying to develop them.
PART III
Best Practice Templates for Asset Management

A business practice standard should identify:

- what the practice is,
- the purpose for executing the practice,
- who in the organization is responsible and accountable for carrying out the practice,
- where and when the practice should be performed, and
- how often the practice should be performed.

A business practice standard should contain a process flow map with role swim lanes. Role-based process flow maps provide excellent visuals of the key process activities and the coordinated roles in the process.

A business practice standard should also contain a procedure. A procedure consists of the key steps required to execute a given activity. As referenced earlier in the paper, one jacket size does not fit all. Procedures can be tweaked by the individual sites to accommodate resource schedules and other constraints.

The Synergy™ Model from SwainSmith is one best practice model for asset management. This model is comprehensive and includes over 300 documented processes, data standards, KPIs, and other elements that can be easily tailored to fit the company’s specifications. A selection of sample documents from Synergy™ is provided below by way of examples.
Exhibit A: Maintenance Weekly Work Schedule

Per industry standards, the Maintenance function is required to develop a weekly maintenance schedule. Below is an example of a Maintenance Weekly Work Schedule practice standard.

DEFINITION
The Weekly Work Schedule defines all work orders that Maintenance Technicians will undertake during the following week.

The Weekly Work Schedule is a target list of work from the collective view of Operations, Maintenance, Engineering, Environmental, and other departments. As such, it is an agreement among all involved personnel from these departments regarding the work that Maintenance Technicians should target in the coming week.

PURPOSE
The Weekly Work Schedule is used to allocate (or balance) available labor resources among the various areas in the facility. Thus, the work schedule must be based on the availability of labor resources and on what work is ready to schedule. The work schedule should allocate at least 100% of available trade resources.

RESPONSIBILITY
The Maintenance Scheduler is responsible for creating a proposed Weekly Work Schedule and finalizing the schedule after the Weekly Scheduling Meeting.

TIMING
The Weekly Work Schedule is prepared by the Thursday of the preceding week.

LOCATION
The Weekly Work Schedule is created in the EAM system and posted to shared folder on the network.

REQUIREMENTS
Preparing the Weekly Work Schedule

Note: The EAM system can be used to define Daily and Weekly Work Schedules.

The Maintenance Scheduler will produce a proposed list of work to be done the following week, including an estimated start date for each work order. This list of work will account for a maximum 100% of manpower available for that week by trade, based on the Resource Availability Schedule for the week.

Creating a Proposed Work Schedule
1. Throughout the week, the Maintenance Scheduler will receive input about work to be done from the Daily Approval Meeting, phone requests, and other sources. From this information, and from conversations with the Operations Maintenance Coordinator and the Maintenance Supervisor, the Maintenance Scheduler will glean a sense of what work is urgent and what can wait.

2. Next, the Maintenance Scheduler will obtain the latest information on available manpower (trade / crew) for the following week, as listed in the Resource Availability Schedule. This schedule takes into account vacations, training, holidays, (known) sick leave, light duty, regular days off, and so on. The Maintenance Scheduler will obtain the Resource Availability Schedule for the following week from the Maintenance Supervisor no later than 3:30 p.m. each Monday.

3. Once the Maintenance Scheduler has collected this information, he/she will go to the Ready-to-Schedule Backlog and compile a list of work to be done, equal to the available manpower, for the following week. Since the Maintenance Scheduler does not schedule Emergency work, he/she will build the schedule only from the Ready-to-Schedule Backlog.

4. The Maintenance Scheduler will list work by type, in the following order:
 - Safety Work / Governmental Work / Regulatory Work (if required by a given date)
 - carryovers from the current week
 - PM / PdM work
 - Routine work

 Note: The Maintenance Supervisor and Operations Maintenance Coordinator will use this same rationale in preparing the Daily Work Schedule, subject to equipment availability and production schedules.

5. The Maintenance Scheduler will continue to list work until all available manpower has been accounted for.

6. In order to create a realistic schedule, the Maintenance Scheduler will categorize work by three additional factors during the Resource Coordination Meeting:
 - work that can be done “on the run”
 - work related to any planned upcoming downtime
 - work waiting on an anticipated downtime opportunity window

 Note: There are two keys to achieving a good compliance rate on work waiting on anticipated downtime. The first is good communication and commitment from Operations. The second is persistent notification from Maintenance that this work needs to be done before it turns into an Urgent work order or becomes an emergency.

7. This prioritized list of work orders will be the main topic of discussion for the Weekly Scheduling Meeting. The list will be modified, as needed, by input from that meeting.
Exhibit A: Maintenance Weekly Work Schedule

The Weekly Scheduling Meeting
Key personnel from Maintenance, Operations, Engineering, Environmental, and other functional areas that will require maintenance resources (as needed) will hold a Weekly Scheduling Meeting each Thursday for approximately 30–45 minutes to develop the final Weekly Work Schedule for the following week.

Note: This may be done as an adjunct to the normal Daily Scheduling Meeting.

This meeting is the time for Operations, Engineering, Environmental, and other functional areas to provide any additional input regarding specific work needs and priorities. The goal of the Weekly Scheduling Meeting is to ensure that the correct amount and type of work is scheduled for the upcoming week, that the week is at a minimum 100% scheduled, and that the most important work is given priority. Work will be prioritized in the following order: Safety, Environmental, and Reliability.

Prior to the meeting, the Maintenance Scheduler will provide all attendees with a preliminary copy of the proposed work schedule. All attendees should review and prioritize this preliminary list.

The Maintenance Scheduler should communicate extensively with all involved personnel leading up to this meeting so that there will be no surprises on the work schedule. With proper preparation, the attendees should reach a consensus relatively easily. The 30- to 45-minute timeframe should be more than enough to reach final agreement on the list of work. Once an agreement is reached, all involved personnel will agree to abide by the completed work schedule as much as possible, or at least as much as good, sound business sense dictates.

Finalizing and Implementing the Weekly Work Schedule

1. Following the Weekly Scheduling Meeting, the Maintenance Scheduler will update the agreed-upon list of work into a final list, which will comprise the Weekly Work Schedule.

 Note: This list of work will also be used as the basis for calculating schedule compliance.

2. The Maintenance Scheduler will then assign appropriate work plans for all work on the finalized Weekly Work Schedule to the Maintenance Supervisor(s). These assignments may be discussed as needed.

3. The Maintenance Supervisor(s) will use the assigned work orders to develop Daily Work Schedules. The Maintenance Supervisor(s) and Operations Maintenance Coordinator should review the daily schedules, depending on the availability of resources such as manpower, equipment availability, facility downtime, and other opportunities, resources, or constraints.

 Note: The availability of parts is not mentioned in the above list. That is because, under the definition of Ready-to-Schedule Work from the Backlog, no work is scheduled on the Weekly Work Schedule until it has been completely planned (in other words, until all parts are in the storeroom and/or on site).
Exhibit A: Maintenance Weekly Work Schedule

PROCESS

<table>
<thead>
<tr>
<th>Maintenance Superintendent</th>
<th>Prior to Wednesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Following Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td>Review Weekly Schedule Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevate Maintenance Weekly Work Schedule</td>
<td>Weekly Scheduling Meeting includes DMC, Maintenance Supervisor, and Maintenance Planner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Share and Update Weekly Work Schedule with Operations</td>
<td>Assign work CPM/CIM, Superintendent and Maintenance Planner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct Utility Work Schedule</td>
<td>Assign and dispatch maintenance work orders for Maintenance Superintendent</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute</td>
<td>Next Completion Phase</td>
<td></td>
</tr>
</tbody>
</table>

PROCEDURE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Scheduler</td>
<td>1. By Wednesday afternoon, draft Preliminary Weekly Work Schedule, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mechanical Schedule;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electrical and Instrument Schedule;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• other schedules, if needed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: Scheduled week should be for seven days—Sunday through Saturday of following week.</td>
<td></td>
</tr>
<tr>
<td>Maintenance Scheduler</td>
<td>1. Hold Weekly Scheduling Meeting each Thursday afternoon to define the following week’s work.</td>
<td>Weekly Scheduling Meeting Agenda</td>
</tr>
</tbody>
</table>
Exhibit A: Maintenance Weekly Work Schedule

WEEKLY WORK SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Activity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Supervisor</td>
<td>Note: If there are unresolved resource or balancing issues, the Maintenance Supervisor and Maintenance Scheduler should resolve them, as much as possible, before Thursday’s Weekly Scheduling Meeting.</td>
<td>Reference Availability Schedule</td>
</tr>
<tr>
<td>Operations Maintenance Coordinator</td>
<td></td>
<td>Resource Coordination</td>
</tr>
<tr>
<td>Maintenance Scheduler</td>
<td>1. After the Weekly Scheduling Meeting, update final Weekly Work Schedule based on input from Weekly Scheduling Meeting, resolving any scheduling conflicts as needed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Distribute final Weekly Work Schedule. This schedule is developed as one schedule but must be sorted by areas or departments, and by mechanical or electrical work.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Assign work plans to Maintenance Supervisor for all scheduled work.</td>
<td>Sample Weekly Work Schedule</td>
</tr>
</tbody>
</table>
One of our clients, Delek US, a $7B petroleum company, used a documented organizational model to standardize its asset management operation.

Our Synergy™ Model provided a foundation of documented best practices. We then worked alongside the client to customize this foundation. The result was a model of company-specific policies, processes, EAM data standards, business rules, roles and responsibilities, performance measures, and other organizational elements.

With this model, our client was able to standardize asset management across their plants. This led to significant improvements in uptime and costs:

- Improved equipment availability by over 3%
- Reduced maintenance costs by 12%
- Improved maintenance productivity by 15%
- Significantly reduced maintenance overtime
- Reduced MRO inventory levels by 10%
NEXT STEPS

Making Standardization A Reality

Standardizing asset management operations across the enterprise makes sense. It establishes common actions and common vernacular, getting the whole organization working and thinking together. This creates a culture of improvement. In lone-wolf operations, gains at one facility are limited to that facility, but when asset management is standardized, improvements at one facility can be duplicated at other sites, creating more value and improving return on assets.

Physical assets and the technology systems that manage them cannot thrive without standardized asset management practices. That’s why standardization is essential to improvement.

Standardizing asset management across the operation may sound daunting, but it is within reach for any organization. There can be a jump-start on the effort by taking advantage of international standards and existing frameworks, which will significantly reduce development time and provide a base of rock-solid practices. A trusted solutions partner can also help to make the standardization process smooth and cost effective.

New technology is often touted as the wave of the future for asset management. Twenty years ago, it was EAM software systems; today it’s the industrial internet of things (IIoT). These technologies certainly have value but no matter what technology comes down the pipe, you can be sure of one thing—the future of asset management is standardized, not just the technology but the key elements that drive technology success.